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Part I

COALGEBRA
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TRANSITION SYSTEMS

Transition systems are an ubiquitous object of study in theoretical computer science.

Name Transition type Notion of equivalence
Deterministic Finite Automata X → 2 × XA Language equivalence
Markov chains X → D(X) Lumpability
Kripke Frames X → Pω(X)× Pω(AP) Zig-zag morphisms
Labelled Transition Systems X → Pω(X)A (Strong) Bisimulation

All the examples above can be described as coalgebras for endofunctor F on the category Set.

Definition 1
Let C be a category and F : C → C an endofunctor on C. An F-coalgebra is a pair (X, c : X → FX)

Coalgebras on Set can represent state machines described above; X is a set of states, c the transition
function, and F describes the type of the transitions performed.

KIRSS, NAJAFI, ROZOWSKI COALGEBRAIC BEHAVIORAL METRICS 2 / 41



COALGEBRA HOMOMORPHISMS

Definition 2
Given (X, c) and (Y, c′), two F-coalgebras on the category C, an F-coalgebra homorphism from (X, c) to
(Y, c′) is an arrow f : X → Y such that c′ ◦ f = Ff ◦ c.
Since identity map is a coalgebra homomorphism and composition of homomorphisms yields
coalgebra homomorphisms then F-coalgebras along their homomorphisms form a category.

Definition 3
An F-coalgebra (Z, z) is final if for any other F-coalgebra (X, c) there exists a unique homomorphism
J·KX : (X, c) → (Z, z). We will omit the subscript if it is obvious from the context. We say that two elements
are behaviourally equivalent if they are mapped by the final homomorphism into the same element of the
carrier of the final coalgebra.

Example of the final coalgebra

Consider a Set endofunctor F = 2 × (−)A. F-coalgebras are deterministic finite automata. The final
coalgebra is given by 2A∗

the set of all languages for alphabet A. The map ⟨ϵ?, (−)a⟩ : 2A∗ → F2A∗
.

Given L ∈ 2A∗
is called semantic Brzozowski derivative and is given by ϵ?(L) = [ϵ ∈ L] and

La = λw. L(aw). The final coalgebra map takes a state to the language it denotes.
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MORE ROBUST NOTION OF EQUIVALENCE

Consider the following probabilistic transition system (coalgebra with the transition of the type
X → D(X + 1)) where ϵ ∈ [0, 1

2 ]

x

u v

y

1

1
2

1
2

1
2 − ϵ 1

2 + ϵ

States u and v are not behaviourally equivalent, x and y are behaviourally equivalent only if ϵ = 0.
What if ϵ is really small? Can we come up with a more robust notion of equivalence? The general
problem seems to be able to go from distances on states to distances on successor distributions.
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Part II

TRANSPORTATION THEORY
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TRANSPORTATION THEORY

For a set X, we define d(x, y) for all x, y ∈ X as distances between the elements such that
d : X × X → R+

0 .
If P,Q ∈ D(X) are the supply and demand functions for the elements in X, dD(P,Q) is the distance
on D(X) such that dD : DX ×DX → [0, 1] and P,Q : X → [0, 1].

We explore Wasserstein distance d↓D and Kantorovich distance d↑D.
It can be proven that d↑D(P,Q) ≤ d↓D(P,Q).
If d is a pseudometric, then both of these distances are pseudometrics.
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WASSERSTEIN DISTANCE

We define t : X × X → [0, 1] (transportation plan) where t(x, y) is the percentage of what is
transported from x to y.
▶ For any x ∈ X,

∑
y∈X t(x, y) = P(x)

▶ For any y ∈ X,
∑

x∈X t(x, y) = Q(x)

T(P,Q) is the set of all possible transportation plans on X.
If M =

∑
x∈X P(x) =

∑
x∈X Q(x), the total transportation cost:

cd := M ·
∑

x,y∈X

t(x, y) · d(x, y)

then the distance between probability distributions would be:

d↓D(P,Q) := min{
∑

x,y∈X

t(x, y) · d(x, y)|t ∈ T(P,Q)}
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KANTOROVICH DISTANCE

We define a non-expansive price function f : X → R+ such that |f (x)− f (y)| ≤ d(x, y). The set of all
these functions is C(d). Then the total profit would be:

gd(f ) := M ·
∑
x∈X

f (x) · (Q(x)− P(x))

The Kantorovich distance would be the maximum amount of gd:

d↑D(P,Q) := max{
∑
x∈X

f (x) · (Q(x)− P(x))|f ∈ C(d)}
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Part III

PSEUDOMETRIC SPACES
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(PSEUDO)METRIC SPACES

Definition 4
Let ⊤ ∈]0,+∞] be a fixed maximal element and X a set. We call a function d : X × X → [0,⊤] a
⊤-pseudometric on X if it satisfies:
▶ d(x, x) = 0 (reflexivity)
▶ d(x, y) = d(y, x) (symmetry)
▶ d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

for all x, y, z ∈ X. If additionally d(x, y) = 0 =⇒ x = y then d is a ⊤-metric. A pseudometric space is a pair
(X, d) where X is a set and d is a pseudometric on X.

Order structure
Pseudometrics on a given set form a poset given by pointwise order.

d ≤ d′ ⇐⇒ ∀x, y ∈ X. d(x, y) ≤ d′(x, y)
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ORDER STRUCTURE - CONTINUED

The set of pseudometrics on X, i.e., Dx = {d | d : X × X → [0,⊤] ∧ d pseudometric} is a complete
lattice. Joins are taken pointwise, and we can define meets in terms of joins.

Join

The join of a set D ⊆ DX is (sup(D))(x, y) = supd∈D(d(x, y))

Meet
The meet of a set D ⊆ DX is inf D = sup{d | d ∈ DX ∧ ∀d′ ∈ D. d ≤ d′}
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PSEUDOMETRICS CATEGORICALLY

Definition 5
A function f : X → Y between pseudometric spaces (X, dx) and (Y, dY) is nonexpansive if
dY

(
f (x), f (y)

)
≤ dX(x, y) for all x, y ∈ X or in other words dY ◦ (f × f ) ≤ dX. If equality holds, then f is an

isometry.
Identity is nonexpansive and composition of nonexpansive functions yields nonexpansive
functions. ⊤-pseudometrics and nonexpansive functions form a category PMet

PMet is bicomplete

PMet has all limits and colimits of small diagrams. The forgetful functor U : PMet → Set takes them
to limits and colimits in Set. Let D : I → PMet be a small diagram and define (Xi, di) := D(i) for each
object i ∈ I. Let {fi : X → Xi}i∈I be a limiting cone in Set for U ◦ D. (X, d) is a limit of D where
d = supi∈I{di ◦ (fi × fi)}.
In the colimit case, the underlying pseudometric is the supremum of the pseudometrics, which
makes cocone maps nonexpansive.
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Part IV

EXAMPLES
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PROBABILISTIC TRANSITON SYSTEMS

We are interested in coalgebras of the type X → D(X + 1). We set ⊤ = 1.
▶ The refusal functor which takes (X, dX) to (X + 1, dX+1) where dX+1 : (X + 1)× (X + 1) → [0, 1] is

given by

dX+1(x, y) =


c · dX(x, y) x, y ∈ X
0 x = y = ✓

1 otherwise

▶ The following is a pseudometric on D(X + 1):

dD(X+1)(P,Q) = d↑DX+1 = sup

{ ∑
x∈X+1

|f (x) · (P(x)− Q(x))|
∣∣∣∣ f : (X + 1, dX+1) → ([0, 1], de)

}
.

▶ Given a coalgebra (X, c : X → D(X + 1)) the behavioural pseudometric for probabilistic transition
systems is the least solution to

d(x, y) = dD(X+1)(c(x), c(y)).

KIRSS, NAJAFI, ROZOWSKI COALGEBRAIC BEHAVIORAL METRICS 14 / 41



DETERMINISTIC AUTOMATA

Deterministic automata are coalgebras for the functor F = 2 × (−)A. Given a 1-pseudometric d on X
we can lift it to pseudometric d↓F on FX, such that for all (o1, s1), (o2, s2) ∈ FX

d↓F((o1, s1), (o2, s2)) = max{d2(o1, o2), c ·max
a∈A

d(s1(a), s2(a))}

The behavioural pseudometric for the deterministic automaton (X, ⟨o, s⟩) is the least solution to the
following fixpoint equation

d(x, y) = max{d2(o(x), o(y)), c ·max
a∈A

d(s(x)(a), s(y)(a))}

for states x, y ∈ X
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METRIC TRANSITION SYSTEMS

▶ Let Σ = {r1, . . . , rn} be a finite set of propositions where each proposition r ∈ Σ has an associated
bounded metric space (Mr, dr).

▶ A valuation is a map u : Σ → ∪r∈ΣMr such that u(r) ∈ Mr for all r ∈ Σ. We can also think of
valuation as a tuple u : Mr1 × · · · × Mrn .

▶ A metric transition system is a coalgebra of the type X → Mr1 × · · · × Mrn × Pω(X). We will again
refer to this functor as F. We write π : FX → Mr1 × · · · × Mrn to denote projection which gives
the valuation associated with given state.

▶ A directed propositional distance between two valuations u, v is pd(u, v) = maxr∈R{dr(u(r), v(r))}
▶ Let (X, c) be a F-coalgebra and let s, t ∈ X. The behavioural pseudometric dc : X × X → [0,∞] is

a solution of the following fixpoint equation

dc(s, t) = max{pd(π(c(s)), π(c(t))), max
s′∈c(s)

min
t′∈c(t)

dc(s′, t′), max
t′∈c(t)

min
s′∈c(s)

dc(s′, t′)}
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Part V

LIFTING FUNCTORS TO PSEUDOMETRIC SPACES

KIRSS, NAJAFI, ROZOWSKI COALGEBRAIC BEHAVIORAL METRICS 17 / 41



PRELIMINARY: COUPLINGS

We will review a definition we will need later for defining the Wasserstein pseudometric.

Definition 6 (Coupling)

Let F : Set → Set be a functor and n ∈ N. Given a set X and elements ti ∈ FX for 1 ≤ i ≤ n, a coupling of
the ti with respect to F is an element t ∈ F(Xn) such that Fπi(t) = ti. We denote the set of all couplings of
t1, . . . , tn w.r.t. F by ΓF(t1, . . . , tn).

Xn F(Xn) ∋ t

X FX ∋ ti

πi Fπi
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LIFTING FUNCTORS ONTO PMet

Definition 7
A functor F̄ : PMet → PMet is called a lifting of a functor F : Set → Set if the following diagram commutes:

PMet PMet

Set Set.

F

F

U U

Denote dF for the pseudometric obtained by applying the lifting of F to the pseudometric space (X, d). In other
words, we denote

F(X, d) := (FX, dF).

Notes:
▶ The lifting is monotone, i.e. d1 ≤ d2 implies dF

1 ≤ dF
2 . No further conditions needed!

▶ We will use evaluation functions evF : F[0,⊤] → [0,⊤] and evaluation functors
F̃ : Set/[0,⊤] → Set/[0,⊤] given by:

FX F[0,⊤] X Y FX FY

[0,⊤] [0,⊤] [0,⊤]

f g

φ

F̃f F̃g

FφFf

F̃f
evF
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KANTOROVICH LIFTING

To define a Kantorovich lifting, we fix
▶ a functor F : Set → Set,
▶ an evaluation function evF.

Then, given (X, d), we define the Kantorovich distance d↑F on FX as

d↑F(t1, t2) := sup{ de

(
F̃f (t1), F̃f (t2)

)
| f : (X, d) → ([0,⊤], de) }

for all t1, t2 ∈ FX and the Kantorovich lifting F : PMet → PMet as the functor
▶ F(X, d) = (FX, d↑F),
▶ F (f ) = Ff

for all (X, d) ∈ Ob(PMet) and f : (X, dX) → (Y, dY) nonexpansive.

Intuition: the smallest distance dF making all the functions F̃f : (FX, dF) → ([0,⊤], de) nonexpansive.

We can also check that d↑F is a pseudometric, F is a functor, and F preserves isometries.
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KANTOROVICH LIFTING OF THE DISTRIBUTION FUNCTOR

Consider:
▶ D : Set → Set, the discrete probability distribution functor

DX = {P : X → [0, 1] |
∑
x∈X

P(x) = 1}, Df (P)(y) =
∑

x∈f−1(y)

P(x),

▶ ⊤ = 1,
▶ evD : D[0, 1] → [0, 1] as the expected value function

evD(P) = E(P) =
∑

t∈[0,1]

t · P(t).

Then if g : X → [0, 1] is a nonexpansive function then

D̃g(P) = (evD ◦ Dg)(P) =
∑
x∈X

g(x)P(x)

and so the Kantorovich distance between two discrete probability distributions P1,P2 is

d↑D(P1,P2) = sup

{
|
∑
x∈X

f (x)(P1(x)− P2(x)) | f : (X, d) → ([0, 1], de)

}
.

Note: we can also analogously define the Kantorovich distance for subdistributions, which will be
helpful in the case of purely probabilistic systems.
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IDEA OF THE WASSERSTEIN LIFTING

We wish to define a Wasserstein lifting, fixing again
▶ a functor F : Set → Set,
▶ an evaluation function evF.

In particular, given (X, d), we want to define the Wasserstein distance d↓F on FX as

d↓F(t1, t2) := inf{ F̃d(t) | t ∈ ΓF(t1, t2), }

where ΓF(t1, t2) is the set of all couplings of t1 and t2.
Then the Wasserstein lifting F : PMet → PMet would be defined as the functor
▶ F(X, d) = (FX, d↓F),
▶ F (f ) = Ff

for all (X, d) ∈ Ob(PMet) and f : (X, dX) → (Y, dY) nonexpansive.

Issues:
▶ couplings of t1, t2 ∈ FX might not exist; hence it may be that

d↓F(t1, t1) = inf ∅ = ⊤ ≠ 0

▶ the triangle inequality might not be fulfilled.
We do have that the Wasserstein distance is symmetric.
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WORK TOWARDS THE WASSERSTEIN LIFTING

It turns out restricting our attention to only particular functors F : Set → Set and evaluation
functions evF guarantees that d↓F is a pseudometric.
Specifically, we wish that
▶ F preserves weak pullbacks,
▶ evF is well-behaved.

Definition 8
We call an evaluation function evF well-behaved if it satisfies the following conditions:

▶ W1. F̃ is monotone, i.e. for f , g : X → [0,⊤] with f ≤ g, we have F̃f ≤ F̃g,
▶ W2. for any t ∈ F([0,⊤]2) we have de(evF(t1), evF(t2)) ≤ F̃de(t) for ti := Fπi(t),
▶ W3. ev−1

F [{0}] = Fi[F({0}], where i : {0} ↪→ [0,⊤] is the inclusion map.

It can be shown that if evF fulfills condition W3, the Wasserstein distance is reflexive, and if F
preserves weak pullbacks and evF fulfills conditions W1,W2, it also satisfies the triangle inequality:
▶ W3 =⇒ reflexivity (lemma 5.15),
▶ W1,W2, F preserves weak pullbacks =⇒ triangle inequality (gluing lemma, lemma 5.19).
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WASSERSTEIN LIFTING

With these conditions in place, the Wasserstein distance

d↓F(t1, t2) := inf{ F̃d(t) | t ∈ ΓF(t1, t2), }

is indeed a pseudometric.

Theorem 1 (Wasserstein pseudometric)

Let F be an endofunctor on Set with evaluation function evF. If F preserves weak pullbacks and evF is
well-behaved then for any pseudometric space (X, d), the Wasserstein distance d↓F is a pseudometric.

Now we can indeed define the Wasserstein lifting F : PMet → PMet as the functor
▶ F(X, d) = (FX, d↓F),
▶ F (f ) = Ff

for all (X, d) ∈ Ob(PMet) and f : (X, dX) → (Y, dY) nonexpansive.

It can be shown that F is a functor, and that it also preserves isometries. Under certain conditions
w.r.t. optimal couplings, if (X, d) is a metric space, so is (FX, d↓F).

Corollary 1 (Preservation of metrics)

Let (X, d) be a metric space. If the infimum in the Wasserstein distance is always a minimum then d↓F is a
metric and thus F(X, d) = (FX, d↓F) is a metric space.
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COMPARISON OF KANTOROVICH AND WASSERSTEIN

Theorem 2
Let F be an endofunctor on Set. If evF satisfies Conditions W1 and W2 of the definition of a well-behaved
evaluation function, then for all pseudometric spaces (X, d) we have d↑F ≤ d↓F.
The inequality can be
▶ strict: for S the squaring functor X → X × X, evS(r1, r2) = r1 + r2 the evaluation function, (X, d)

a metric space and elements t1 := (x1, x2) and t2 := (x1, x2), x1 ̸= x2 in X × X, we have that

d↑F(t1, t2) = 0, d↓F(t1, t2) = 2d(x1, x2) > 0.

▶ an equality: for D the distribution functor and evD : D[0, 1] → [0, 1] the expected value function
and (X, d) a pseudometric space, the Wasserstein distance of two probability distributions
P1,P2 ∈ DX is

d↓D(P1,P2) = inf

 ∑
x1,x2∈X

d(x1, x2) · P(x1, x2) | P ∈ ΓD(P1,P2)

 ,

which coincides with the Kantorovich pseudometric by the Kantorovich-Rubinstein duality
from transportation theory.
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MACHINE FUNCTOR EXAMPLE

▶ For a finite set A, define the input functor −A : Set → Set by

XA = {f : A → X functions}, f A : XA → YA, f A(g) = f ◦ g.

▶ Then (well-behaved) evaluation functions [0,⊤]A → [0,⊤] and Wasserstein distances can be
defined as follows:

⊤ evI(s) d↓I(s1, s2)

⊤ ∈]0,∞] maxa∈A s(a) maxa∈A d(s1(a), s2(a))
⊤ = ∞

∑
a∈A s(a)

∑
a∈A d(s1(a), s2(a))

⊤ ∈]0,∞[ |A|−1 ∑
a∈A s(a) |A|−1 ∑

a∈A d(s1(a), s2(a))
▶ Define the machine functor MB : Set → Set via the input functor as follows:

MB(X) = B × XA, MB(f ) = idB × f A.

Pick an evaluation function evI from above and define the evaluation function for MB by

evMB : B × [0,⊤]A → [0,⊤], evMB(o, s) = c · evI(s)

for some c ∈ (0, 1].
▶ Then the Wasserstein distance is 1 for states of different type (given that MB(π) = idB × πA) and

c · evI(d ◦ ⟨s1, s2⟩) for the same type.
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PRODUCT AND COPRODUCT BIFUNCTORS
PRODUCT BIFUNCTOR

Definition 9
The product bifunctor is the bifunctor F : Set2 → Set where:
▶ F(X1,X2) = X1 × X2

▶ F(f1, f2) = f1 × f2, fi : Xi → Yi

X1 × X2 X2

Y1 × Y2 Y2

f2f1×f2

This bifunctor preserves pullbacks.

Lemma 1
These evaluation functions evF : [0,⊤]2 → [0,⊤] are well-behaved:

⊤ other parameters evF(r1, r2)

⊤ ∈]0,∞] c1, c2 ∈]0, 1] max{c1r1, c2r2}
⊤ = ∞ c1, c2 ∈]0,∞[, p ∈ N (c1xp

1 + c2xp
2)

1/p

⊤ ∈]0,∞[ c1, c2 ∈]0, 1], c1 + c2 ≤ 1, p ∈ N (c1xp
1 + c2xp

2)
1/p
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PRODUCT AND COPRODUCT BIFUNCTORS
PRODUCT BIFUNCTOR - CONTINUED

Lemma 2
The lifted pseudometrics (d1, d2)

F : (X × X)2 → [0,⊤]:

evF(r1, r2) (d1, d2)
F((x1, x2), (y1, y2)

)
max{c1r1, c2r2} max{c1d1(x1, y1), c2d2(x2, y2)}

(c1xp
1 + c2xp

2)
1/p (

c1d1(x1, y1)
p + c2d2(x2, y2)

p)1/p

Lemma 3
If c1 = c2 = 1 for the first evaluation function, given two pseudometric spaces X1, d1 and X2, d2, we obtain
the lifted pseudometric d∞ : (X1 × X2)

2 → [0,⊤], with d∞
(
(x1, x2), (y1, y2)

)
= max{d1(x1, y1), d2(x2, y2)}.

(X1 × X2, d∞) = (X1, d1)× (X2, d2).
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PRODUCT AND COPRODUCT BIFUNCTORS
COPRODUCT BIFUNCTOR

Definition 10
The coproduct bifunctor is the bifunctor F : Set2 → Set, where:
▶ F(X1,X2) = X1 + X2

▶ F(f1, f2) = f1 + f2, fi : Xi → Yi such that f1 + f2 : X1 + X2 → Y1 + Y2, (f1 + f2)(x, i) =
(
fi(x), i

)
This bifunctor preserves pullbacks.

Lemma 4
The evaluation function evF : [0,⊤] + [0,⊤] → [0,⊤] where evF(x, i) = x is well-behaved.

Lemma 5
The lifted pseudometric d+ : (X1 + X2)

2 → [0,⊤] for the evaluation function mentioned in the previous
lemma would be:

d+
(
(x1, i1), (x2, i2)

)
=

{
di(x1, x2), if i1 = i2 = i
⊤, else

Lemma 6
(X1 + X2, d+) = (X1, d1) + (X2, d2)
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Part VI

BISIMILARITY PSEUDOMETRICS
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LIFTING COALGEBRAS TO PMet

Let F : Set → Set be an endofunctor on Set, which has a lifting F̄ : PMet → PMet. We will write
dF : FX × FX → [0,⊤] for the pseudometric on FX obtained by applying F̄ to some arbitrary
pseudometric space (X, d).

High level idea

In general we would like to turn F-coalgebra (X, c : X → FX) into an F̄-coalgebra ((X, dc), c) such
that c : (X, dc) → (FX, dF

c ) is nonexpansive. Observe that given any pseudometric d : X × X → [0,⊤]
the assignment d 7→ dF ◦ (c × c) is a monotone endomap on the set of pseudometrics on X. By
Knaster-Tarski fixpoint theorem this mapping has a least fixed point, given by

dc = inf{d | d : X × X → [0,⊤] pseudometric ∧ dF ◦ (c × c) ≤ d}

Since dc = dF
c ◦ (c × c), we have that c is an isometry and hence is a nonexpansive function. Now, we

need to verify that homomorphisms between F-coalgebras yield homomorphisms between such
defined F̄-coalgebras.
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LIFTING COALGEBRAS TO PMet - CONTINUED

Lemma 7
Let (X, c) and (Y, c′) be F-coalgebras. If f : X → Y is an F-coalgebra homomorphism, then
f : (X, dc) → (Y, d′c) is nonexpansive (with dc and dc′ defined via fixpoint construction from the previous
slide). Additionally, it is an isometry if F̄ preserves isometries.

Lemma 8
If (Z, z) is the final F-coalgebra, then ((Z, dz), z) is the final F̄-coalgebra.

Definition 11
We will use J.KX : X → Z to denote a unique homorphism to the final coalgebra and will omit the subscript
when X is obvious from the context. Given a F-coalgebra (X, c) we can define the behavioural distance to be
the pseudometric bdc(x, y) := dz(JxK, JyK) for all x, y ∈ X. Observe that if F̄ preserves isometries, then
dc = bdc

Behaviourally equivalent states are in zero distance

Observe that if JxK = JyK, then bdc(JxK, JyK) = 0. Follows from reflexivity of dz. The converse requires
an extra condition on F̄ and we will discuss it later.
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EXAMPLE WITH DETERMINISTIC AUTOMATA

We are interested in coalgebras for the functor F = 2 × (−)A. Final F-coalgebra is given by the set
2A∗

equipped with the semantic Brzozowski derivative. Consider an evaluation function:

evF : 2 × [0, 1]A → [0, 1] evF(⟨o, s⟩) = c ·max
a∈A

s(a) for 0 < c < 1

Given a 1-pseudometric d on 2A∗
the Wasserstein lifting yields the pseudometric d↓F on F2A∗

, such
that for all (o1, s1), (o2, s2) ∈ F2A∗

d↓F((o1, s1), (o2, s2)) = max{d2(o1, o2), c ·max
a∈A

d(s1(a), s2(a))}

We write d2 : 2 × 2 → [0, 1] for a discrete pseudometric. We want the semantic Brzozowski
derivative to be an isometry, so we are looking for a least solution to the following fixpoint equation

d(L1,L2) = max{d2(L1(ϵ),L2(ϵ)), c ·max
a∈A

d(λw. L1(aw), λw. L2(aw))}

for languages L1,L2 ∈ 2A∗
.
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EXAMPLE WITH DETERMINISTIC AUTOMATA - CONTINUED

The least solution to that fixpoint equation is the pseudometric d2A∗ : 2A∗ × 2A∗ → [0, 1] given by

d2A∗ (L1,L2) = cinf{n∈N|∃w∈An. L1(w)̸=L2(w)}

In other words, this is c to the power of the length of the least prefix which distinguishes both
languages.

Behavioural distance example

Consider following deterministic automata. Let c = 1
2

q0

a

q1 q2 q3
a a

d(q0, q1) =
1
4

d(q0, q2) =
1
2

d(q0, q3) = 1
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FINAL CHAIN CONSTRUCTION

Definition 12 (Worrell 2005)

Let C be a category with a terminal object 1 and limits of ordinal indexed cochains and F : C → C an
endofunctor on C. The final sequence is an ordinal indexed sequence of objects ⟨Wi⟩ with maps
{pi,j : Wj → Wi}i≤j defined uniquely by the following
▶ Wi+1 = FWi

▶ pi+1,j+1 = Fpi,j

▶ ∀i ≤ j ≤ k. pi,k = pi,j ◦ pj,k

▶ If j is limit ordinal then the cone {pi,j : Wj → Wi}i≤j is a limiting cone.

Lemma 9 (Adamek and Koubek 1995)

If pj,j+1 is an isomorphism for some ordinal j, then (Wj, (pj,j+1)
−1) is the final F-coalgebra

Lemma 10 (Worrell 2005)

We can extend F-coalgebra (X, c) to a cone {ci : X → Wi}i over the final sequence such that ci+1 = Fci ◦ c
We prove the above by transfinite induction and show that ∀i ≤ j. pi,j ◦ cj = ci. Not too hard to show
that cj : X → Wj is the final F-coalgebra homomorphism, if the final chain stabilises at j.
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FINAL COALGEBRA METRIC

Theorem 3
Let (Z, z) be the final F-coalgebra. If F̄ : PMet → PMet preserves metrics and final chain for F stabilises, then
(Z, dz) (with dz defined as before) is a metric space.

Proof sketch.

▶ Endow every element of the final chain with a metric.
• There is only one metric on the terminal object (the discrete metric).
• If (Wj, dj) is a metric space, then Wj+1 = (FWj, dj+1 = dF

j ) is also a metric space.
• In the limit case, we need to show that supi≤j(di ◦ (pi,j × pi,j)) is a metric. If two things are in

zero distance, then they agree at all pi,j which are jointly monic, so they must be equal.
▶ Show that given a F-coalgebra (X, c), the maps of the induced cone {ci : X → Wi}i are

nonexpansive.
▶ If the final chain stabilises at j, zj : Z → Wj is a final F̄-coalgebra homomorphism.
▶ If x, y ∈ Z are in distance zero in Z, then their images under zj are also in distance zero in Wj

and hence zj(x) = zj(y). Since, zj is an iso, we have that x = y.
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BISIMILARITY METRIC FOR PROBABILISTIC TRANSITON SYSTEMS

We are interested in coalgebras of the type X → D(X + 1). We set ⊤ = 1.
▶ First, consider an identity functor with an evaluation map evId : [0, 1] → [0, 1] given by

evId(x) : c · x for 0 < c < 1.
▶ Then, take a coproduct with a discrete metric on 1. We obtain the refusal functor which takes

(X, dX) to (1 + X, d1+X) where dX+1 : (1 + X)× (1 + X) → [0, 1] is given by

dX+1(x, y) =


c · dX(x, y) x, y ∈ X
0 x = y = ✓

1 otherwise

▶ Take the expected value evaluation function evD : D[0, 1] → [0, 1] given by evD(P) =
∑

x∈[0,1] x ·P(x)
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BISIMILARITY METRIC FOR PROBABILISTIC TRANSITION SYSTEMS -
CONTINUED

▶ Now, we can take the Kantorovich lifting to obtain the following pseudometric on D(X + 1)

dD(X+1)(P,Q) = d↑DX+1 = sup

{ ∑
x∈X+1

|f (x) · (P(x)− Q(x))| | f : (X + 1, dX+1) → ([0, 1], de)

}

▶ We have Kantorovich-Rubinstein duality and preservation of metrics and isometries.
▶ Therefore, given a coalgebra (X, c : X → D(X + 1)) the least solution to

d(x, y) = dD(X+1)(c(x), c(y))

is a behavioural metric. In such a way we have obtained a discrete version of the behavioural
metric of Breugel and Worrell 2006
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METRIC TRANSITION SYSTEMS

▶ In this example we set ⊤ = ∞
▶ Let Σ = {r1, . . . , rn} be a finite set of propositions where each proposition r ∈ Σ has an associated

bounded metric space (Mr, dr).
▶ A valuation is a map u : Σ → ∪r∈ΣMr such that u(r) ∈ Mr for all r ∈ Σ. We can also think of

valuation as a tuple u : Mr1 × · · · × Mrn .
▶ A metric transition system is a coalgebra of the type X → Mr1 × · · · × Mrn × Pω(X). We will again

refer to this functor as F.
▶ A directed propositional distance between two valuations u, v is pd(u, v) = maxr∈R{dr(u(r), v(r))}
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METRIC TRANSITION SYSTEMS EXAMPLE - CONTINUED

▶ We can lift any pseudometric (X, d) to a metric (FX, dF) combining the Hausdorff metric on Pω

obtained using evaluation function max : Pω[0,∞] and the propositional distance. In the end
we have

dF(P,Q) = max{pd(π(P), π(Q)),max
s′∈S

min
t′∈T

d(s′, t′),max
t′∈T

min
s′∈S

d(s′, t′)}

We used π : FX → Mr1 × · · · × Mrn to denote projection which gives the valuation associated
with given state.

▶ Let (X, c) be a F-coalgebra and let s, t ∈ X. The behavioural pseudometric dc : X × X → [0,∞] is
a solution of the following fixpoint equation

dc(s, t) = max{pd(π(c(s)), π(c(t))), max
s′∈c(s)

min
t′∈c(t)

dc(s′, t′), max
t′∈c(t)

min
s′∈c(s)

dc(s′, t′)}
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