
Formally verified derivation of an executable and
terminating CEK machine from call-by-value 𝜆𝑝-calculus

WOJCIECH ROZOWSKI∗, ECS, University of Southampton, UK

1 BACKGROUND ANDMOTIVATION
Abstract machines describe the semantics of programming languages as first-order transition

systems. They offer a realistic, yet abstract model of executing a program. Well known examples

include STG [10], CEK [8] or Krivine machine [11]. Biernacka & Danvy [3] have shown that abstract

machines are not invented, but rather can be derived mathematically from calculi with explicit

substitutions. The authors introduced a formalism called 𝜆𝑝 , and demonstrate how several abstract

machines can be derived from well understood program transformations [4].

It is worth considering formalising such derivation in dependently-typed programming languages,

such as Coq or Agda [6] to obtain machines formally verified to be correct. Sieczkowski [13] and

Biernacka [2] provided a Coq formalisation of Biernacka & Danvy’s framework and showed the

correctness of the transforms leading to abstract machines. Although proven to be correct, those

formalisations are not executable, as their machines are inductively defined relations between the

states. Swierstra [14] provided an Agda formalisation of 𝜆𝑝 under call-by-name and derived an

executable Krivine machine, following Biernacka & Danvy’s approach. An interesting contribution

of this study is proof of the termination of the executable Krivine machine, which relies on the

strong normalisation property for simply typed call-by-name 𝜆𝑝 proved using the Bove-Capretta

method [5] and a Tait-style logical relation [15].

This paper sums up our efforts on extending Swierstra’s research to handle other abstract

machines, beyond the Krivine machine.

2 CONTRIBUTIONS
We successfully extend the Swierstra formalisation of 𝜆𝑝 to a call-by-value case, including the

properties of head reduction. We provide proof of a Strong Normalisation property for simply

typed call-by-value 𝜆𝑝-calculus using a Tait-style logical relation in a similar way to Altenkirch &

Chapman [1]. From such terminating evaluator, we obtain an abstract machine corresponding to

Felleisen’s CEK [8]. We show the correctness and termination of the obtained machine by showing

trace equivalence with the call-by-value 𝜆𝑝 evaluator. All those theorems and properties have been

fully implemented and checked by Agda. The corresponding code is freely available online.
1
. In

this paper we try to omit Agda code and instead provide a high-level overview of our formalisation,

sketching the main proofs and presenting the main data types in the form of sequent-style rules.

3 SINGLE STEP EVALUATOR FOR CALL-BY-VALUE 𝜆𝑝

The formalisation of 𝜆𝑝 is defined on top of simply-typed 𝜆-calculus with intrinsic typing and De

Bruijn indices in a fashion similar to Wadler et al [16]. The terms of 𝜆𝑝 , called closed terms, are

either closures (that is 𝜆-terms with corresponding substitution environment for each of the free

variables) or an application of two closed terms. The only values in that language are closures of

𝜆-abstractions. We treat the semantics as reduction semantics in the style of Felleisen [7]. Figure 1

shows the definitions of terms of call-by-value 𝜆𝑝 , its redexes and evaluation contexts. Similarly to

∗
Research advisor: Julian Rathke; ACM student member number: 3641070; Category: undergraduate

1
https://github.com/wkrozowski/CEK-from-lambda-p-hat

Author’s address: Wojciech Rozowski, ECS, University of Southampton, Southampton, UK, wojciech.rozowski@gmail.com.

https://github.com/wkrozowski/CEK-from-lambda-p-hat


2 Wojciech Rozowski

Swierstra [14], we parametrise the evaluation contexts by their types, where the first type is the

current type of the hole and the second is the original type of expression under evaluation. To define

Closed u Closed term of type u

t : Γ ⊢ 𝑢 e : Env Γ

Closure t e : Closed u
(1)

f : Closed (u ⇒ v) x : Closed u

Clapp f x : Closed v
(2)

Env Γ Substitution environment for type context Γ

c : Closed u e : Env Γ

𝑐 · 𝑒 : Env (𝑢 :: Γ)
(3)

Nil : Env []
(4)

Redex 𝜎 Reducible expression of type 𝜎

i : Γ ∋ 𝜎 e : Env Γ

Lookup i env : Redex 𝜎
(5)

f : Γ ⊢ (𝜎 ⇒ 𝜏) x : Γ ⊢ 𝜎 e : Env Γ

App f x e : Redex 𝜏
(6)

f : (𝜎 :: Γ) ⊢ 𝜏 e : Env Γ v : Value 𝜎

Beta f e v : Redex 𝜏
(7)

EvalContext u v Evaluation context for types u and v

MT : EvalContext u u
(8)

c : Closed u ctx : EvalContext v w

ARG c ctx : EvalContext (u⇒v) w
(9)

v : Value (a⇒b) ctx : EvalContext b c

FN v ctx : EvalContext a c
(10)

Fig. 1. Closed terms and substitution environments

single-step reduction, we follow Biernacka & Danvy and define three functions: decompose (which

takes a term and returns a redex in corresponding evaluation context), contract (which performs

single-step reduction of a redex), and plug which takes a closed term (redex upon reduction), and

recreates the term basing on accumulated context. The decompose function is defined in terms of

an auxiliary function, decompose’, a state transition function operating on configurations that are

pairs of closed terms and corresponding evaluation contexts, by calling it with an empty frame.

Composing decompose, contract and plug yields headReduce - a small-step reduction function

for call-by-value 𝜆𝑝 .

4 REFOCUSING
For a single-step evaluator defined in the way shown by Biernacka & Danvy, there is a simplifying

observation to be made. When performing multiple head reduction steps, reduced redexes are

plugged to recreate the original expression, only to be decomposed a step later. Danvy [7] observed

that decompose composed with plug is equivalent to decompose’, so instead of rebuilding the

term, we can continue traversal from current configuration. Such a transform is referred to in

literature as a refocusing transform [3].

Theorem 4.1 (Refocusing theorem). For any u and v let c denote closed term of type u and let
ctx denote an EvalContext parametrised by types u and v. Then, decompose (plug ctx c) ≡
decompose’ ctx c

The above property trivially follows from the definition. After introducing refocus function

equal to decompose’, we can simplify the three-step evaluator, to two-step process consisting of

composition of refocus and contract. An evaluator in this form is often referred to as pre-abstract

machine [3].



Formally verified derivation of an executable and terminating CEK machine from call-by-value 𝜆𝑝-calculus 3

5 STRONG NORMALISATION PROPERTY FOR CALL-BY-VALUE 𝜆𝑝

Recursive calling of the small-step evaluation function is not structurally recursive, therefore it

does not pass the termination checker in Agda. To prove its termination we use the Bove-Capretta

method [5], which relies on providing an execution trace, which carries no computational value, but

assists the termination checker. We rely on Swierstra’s [14] Tait-style logical relation for reducible

closed terms and reducible environments. To populate the relation we prove the following three

properties:

Lemma 5.1 (Preservation lemma). If e{ e’, then e is reducible ⇐⇒ e’ is reducible

Lemma 5.2 (Reducibility lemma). Closure of a well-typed term with a reducible environment is
always reducible

Lemma 5.3 (Right hand side reducibility lemma). If x is reducible, then for any body and env
headReduce (Clapp (Closure (𝜆 body) env) x) is also reducible

Lemma 5.2 allows us to obtain a Bove-Capretta trace for any well-typed term with no free

variables, as an empty environment is trivially reducible. The proof of this property relies on the

observation that we can easily show the reducibility of current closure after one-step reduction,

and then appeal to Lemma 5.1 to show the desired property. In a 𝜆-abstraction case, we need to

additionally show that passing a reducible argument to it, yields a reducible result [9]. In the cases

when performing 𝛽-reduction it is quite easy to show with Lemma 5.2, but in call-by-value, such

a situation would only happen if the right-hand side of the application is a value. To cope with

that, we introduce Lemma 5.3, which shows that with a finite amount of reductions right-hand side

eventually becomes a value, leading to the 𝛽-reduction case.

6 CEK MACHINE
We can further simplify a pre-abstract machine, which we have obtained through refocusing

transform. If we get rid of the contract function, and simply call refocus with already contracted

redex, we obtain a state transition function of an abstractmachine. Also, uponmaking an observation

that in all of the steps we always store closures, rather than applications of closed terms, we can

refine the obtained transition rules to operate on triples of 𝜆-terms, environments and evaluation

contexts. It can be noticed, that such presentation of the rules corresponds to Felleisen’s CEK

machine [8], however operating on De Bruijn variables, and having optimized closure-making step.

We introduce a new Bove-Capretta data type, where each of the constructors corresponds to one of

the possible state transitions. We can easily show termination and correctness, by obtaining such a

trace by rewriting the trace obtained through Lemma 5.2.

7 CONCLUSIONS AND FUTUREWORK
We successfully extended Swierstra’s approach to a broader, call-by-value context. It would be

beneficial to take it even further and consider formalising executable machines for context-sensitive

languages with first-class control operators, such as Parigiot’s 𝜆𝜇-calculus [12]. Another interesting

area could include non-normalising languages, and attempts to obtain executable machines for

real-life functional programming languages.

ACKNOWLEDGMENTS
I would like to thank Julian Rathke for supervising this project and to Wouter Swierstra, Thorsten

Altenkirch and Filip Sieczkowski for the valuable discussions and feedback.



4 Wojciech Rozowski

REFERENCES
[1] Thorsten Altenkirch and James Chapman. 2009. Big-step normalisation. Journal of Functional Programming 19, 3-4

(2009), 311–333. https://doi.org/10.1017/S0956796809007278

[2] Biernacka. 2016. Generalized Refocusing: a Formalization in Coq.

[3] Małgorzata Biernacka and Olivier Danvy. 2007. A Concrete Framework for Environment Machines. ACM Trans.
Comput. Logic 9, 1 (Dec. 2007), 6–es. https://doi.org/10.1145/1297658.1297664

[4] Malgorzata Biernacka and Olivier Danvy. 2007. A Syntactic Correspondence between Context-Sensitive Calculi and

Abstract Machines. Theor. Comput. Sci. 375 (05 2007), 76–108. https://doi.org/10.1016/j.tcs.2006.12.028

[5] Ana Bove. 2003. General Recursion in Type Theory. In Types for Proofs and Programs, Herman Geuvers and Freek

Wiedijk (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 39–58.

[6] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A Brief Overview of Agda – A Functional Language with Dependent

Types. In Theorem Proving in Higher Order Logics, Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius

Wenzel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 73–78.

[7] Olivier Danvy and Lasse R. Nielsen. 2004. Refocusing in Reduction Semantics.

[8] M. Felleisen and D. Friedman. 1987. Control operators, the SECD-machine, and the 𝜆-calculus. In Formal Description of
Programming Concepts.

[9] Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge University Press, USA.

[10] Peyton Jones, Simon L, and Simon Peyton Jones. 1992. Implementing Lazy Functional Languages on Stock Hardware:

The Spineless Tagless G-machine. Journal of Functional Programming 2 (July 1992), 127–202.

[11] Jean-Louis Krivine. 2007. A Call-by-Name Lambda-Calculus Machine. Higher Order Symbol. Comput. 20, 3 (Sept. 2007),
199–207. https://doi.org/10.1007/s10990-007-9018-9

[12] Michel Parigot. 1992. 𝜆𝜇-Calculus: An algorithmic interpretation of classical natural deduction. In Logic Programming
and Automated Reasoning, Andrei Voronkov (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 190–201.

[13] Filip Sieczkowski, Małgorzata Biernacka, and Dariusz Biernacki. 2011. Automating Derivations of Abstract Machines

from Reduction Semantics:. In Implementation and Application of Functional Languages, Jurriaan Hage and Marco T.

Morazán (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 72–88.

[14] Wouter Swierstra. 2012. From Mathematics to Abstract Machine: A formal derivation of an executable Krivine machine.

In Proceedings Fourth Workshop on Mathematically Structured Functional Programming, Tallinn, Estonia, 25 March

2012 (Electronic Proceedings in Theoretical Computer Science, Vol. 76), James Chapman and Paul Blain Levy (Eds.). Open

Publishing Association, 163–177. https://doi.org/10.4204/EPTCS.76.10

[15] W. W. Tait. 1967. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic 32, 2 (1967),
198–212. https://doi.org/10.2307/2271658

[16] Philip Wadler, Wen Kokke, and Jeremy G. Siek. 2020. Programming Language Foundations in Agda. http://plfa.inf.ed.

ac.uk/20.07/

https://doi.org/10.1017/S0956796809007278
https://doi.org/10.1145/1297658.1297664
https://doi.org/10.1016/j.tcs.2006.12.028
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.4204/EPTCS.76.10
https://doi.org/10.2307/2271658
http://plfa.inf.ed.ac.uk/20.07/
http://plfa.inf.ed.ac.uk/20.07/

	1 Background and motivation
	2 Contributions
	3 Single step evaluator for call-by-value 
	4 Refocusing
	5 Strong normalisation property for call-by-value 
	6 CEK machine
	7 Conclusions and future work
	Acknowledgments
	References

